

Augmented Cognition:

Improving Net Human-Machine Information Capacity

Dylan Schmorrow, Ph.D. LCDR, MSC, US Navy Program Manager, ITO

Objective

Demonstrate novel brain-machine-symbiosis to augment human cognition and performance.

This significantly increases our military's ability to think asymmetrically and dominate speed of command.

Essential Elements

System Interface Director Channel Exploitation

Essential Elements

Goal

Augment Cognition by fundamentally reconceptualizing human-machine symbiosis.

NOT redesigning Human-Computer Interfaces yet again

Why DARPA?

- Inertia in classic HCI methods
 - Assume cognition = reasoning
 - Try Fix Try Fix → compromise design
- Demands of Joint and Combined Operations:
 - Coming increase in info demand (e.g UAVs)
- Crosses all Platforms and all Environments
 - Permeates all boundaries

How?

- Measure cognitive load and capacity.
 - Brain imaging (e.g. fMRI)
 - External head monitoring (e.g. EEG)
 - Body sensing (e.g. Arousal)
 - Eye measures (e.g. Pupilary response)
- Exploit human sensory channels.
- Optimize information allocation.

Phased Approach

Initial Program Phases

Evaluation Criteria

Phase 1: Enhanced Performance in Flight Simulator Cockpit

- 30% performance improvement over baseline while executing three competing tasks
- ➤ 30% performance improvement over baseline while executing one task with interruption
- ➤ 100% improvement in memory recall

Phase 2: Enhanced Performance in InfoCockpit

- > 50% improvement in silicon performance
- 100% improvement in agent-augmented human performance while executing three to five competing tasks

Phase 3: Enhanced Performance Under Stress

- > 10% (or less) degradation in task performance under stress (baseline Phase 2).
- No catastrophic failures

Phase 4: Integrated Field Demonstration in Operational / Transition Environment

Experiment with college students and military operators. Evaluate against both individual and task baselines.

Phase I Criteria

Task	Q2FY02	Q4FY02	Q2FY03
	(Initial)	(Mid-Term)	(Final)
Enhanced Performance in InfoCockpit	30% memory improvement over baseline / demo statistically significant mapping to brain imaging	50% memory improvement over baseline / demo statistically significant mapping to brain imaging	100% memory improvement over baseline / demo statistically significant mapping to brain imaging
Cognitive Workload Assessor	Baseline using Cognitive Workload Index (ICA) Measure	70% correspondence to ICA measure; State shift detection <5min	95% correspondence to ICA measure; State shift detection <1min
Tech Base	Establish Baseline performances without Interruption- simple task	Baseline >X 2 degree of task complexity With interruption from one source	Baseline > X 3 degree of task complexity With interruption from two sources

Why Now?

Metrics

- Initial
 - Using existing metrics from
 - Cognitive science
 - Reaction time & interference effects
 - Neural science
 - Functional magnetic resonance imaging (fMRI)
 - Computer science
 - Index of cognitive activity & instructions / sec
- Down stream <u>Objective</u>
 - Develop new class of metrics
 - Appropriate to Symbiots (as one entity)
 - Calorie-bytes / time
- This effort is underway & will be
 - Significant contribution itself
 - Increasingly interesting philosophically

Payoff

- High velocity, accurate decisions
 - Consider human processing capabilities

Flow (Bits/Sec) % Filtered % Oria, Filtered

Estimates of Human Processing Capabilities Filtering Algorithms

	•	`		•
Sensory	1 Billion	8		
Neural Coding	3 Million	0.003		
Cognitive	16	0.000005	.000000016	K
To Perm. Store	0.7	0.04	.000000014	

Only 1.6 x 10-9 of data bombarding the operator used in real time!

Source: Steinbuck, 1962

Process

Orders of magnitude more "cognitive" power available

Military Utility

- Multiple order of magnitude increase in rate of correct decisions made under stress
 - Tactically
 - Operationally
 - Strategically

Double velocity of military (OODA) loop, while

slowing adversary's

- Observe
- Orient
- Decide
- Act

Enable effects based and asymmetric thinking

Transition

- Who wants the technology?
 - JFCOM (J9)
 - CINC HQs / STRATCOM
 - NWDC / ONR
 - Homeland defense / Intel
 - Surface warfare
 - TacAir/Army FCS UAV's
- Transition approach
 - Co-agents:
 - Fort Huachuca (tech dev)
 - ONR / SPAWAR-SC (human use)

Early Results

InfoCockpit experiments
explored ways to make it
easier for people to encode,
store, and retrieve
information were conducted

Results indicate that users of InfoCockpit environments demonstrated a <u>63%</u> improvement in memory in contrast to users of the traditional desktop computer

Early Results

Mobile InfoCockpit study using Augmented Reality system for Coast Guard harbor navigation.

Initial data collection, the results of which have shown a 342% improvement in human performance of maritime navigation tasks